# Changeset 7492:22c24fe79fcf

Ignore:
Timestamp:
12/01/07 22:11:13 (5 years ago)
Branch:
default
Message:

Location:
sage
Files:
5 edited

Unmodified
Removed
• ## sage/categories/pushout.py

 r6689 return False class CompositConstructionFunctor(ConstructionFunctor): class CompositeConstructionFunctor(ConstructionFunctor): def __init__(self, first, second): Functor.__init__(self, first.domain(), second.codomain()) c = cmp(self.poly, other.poly) return c class AlgebraicClosureFunctor(ConstructionFunctor): def __init__(self): Functor.__init__(self, Rings(), Rings()) self.rank = 3 def __call__(self, R): return R.algebraic_closure() def merge(self, other): # Algebraic Closure subsumes Algebraic Extension return self def BlackBoxConstructionFunctor(ConstructionFunctor):
• ## sage/rings/complex_double.pyx

 r7435 sage: parent(a) Symbolic Ring sage: CDF(1) + RR(1) 2.0 """ return self._coerce_try(x, [self.real_double_field(), """ return self(3.1415926535897932384626433832) def construction(self): """ Returns the functorial construction of self, namely, algebraic closure of the real double field. EXAMPLES: sage: c, S = CDF.construction(); S Real Double Field sage: CDF == c(S) True """ from sage.categories.pushout import AlgebraicClosureFunctor return (AlgebraicClosureFunctor(), self.real_double_field()) def new_ComplexDoubleElement():
• ## sage/rings/complex_field.py

 r7428 * this MPFR complex field, or any other of higher precision * anything that canonically coerces to the mpfr real field with this prec EXAMPLES: sage: ComplexField(200)(1) + RealField(90)(1) 2.0000000000000000000000000 """ try: """ return False def construction(self): """ Returns the functorial construction of self, namely, algebraic closure of the real field with the same precision. EXAMPLES: sage: c, S = CC.construction(); S Real Field with 53 bits of precision sage: CC == c(S) True """ from sage.categories.pushout import AlgebraicClosureFunctor return (AlgebraicClosureFunctor(), self._real_field()) def pi(self):
• ## sage/rings/real_double.pyx

 r7319 {'type': 'RDF'}), sage.rings.rational_field.QQ) def algebraic_closure(self): """ Returns the algebraic closure of self, ie, the complex double field. EXAMPLES: sage: RDF.algebraic_closure() Complex Double Field """ from sage.rings.complex_double import CDF return CDF cdef coerce_map_from_c(self, S):
• ## sage/rings/real_mpfr.pyx

 r7471 """ return sage.rings.complex_field.ComplexField(self.prec()) def algebraic_closure(self): """ Returns the algebraic closure of self, ie the complex field with the same precision. """ return self.complex_field() def ngens(self):
Note: See TracChangeset for help on using the changeset viewer.