# Ticket #9375: trac_9375-graph-doctests.patch

File trac_9375-graph-doctests.patch, 26.7 KB (added by mvngu, 3 years ago)
• ## sage/graphs/graph_generators.py

# HG changeset patch
# User Minh Van Nguyen <nguyenminh2@gmail.com>
# Date 1276617601 25200
# Node ID 2a72cc454c889bd724863c7e2e0d14bc8a3ce601
# Parent  1077395365dabd8864bf0f9f1972aaeeca80bcfd
#9375: more documentation & doctests for BalancedTree, BarbellGraph, BubbleSortGraph, BullGraph, ChvatalGraph

diff --git a/sage/graphs/graph_generators.py b/sage/graphs/graph_generators.py
 a 3 20 4 90 5 544 Generate all graphs with a specified degree sequence: (see http://www.research.att.com/~njas/sequences/A002851) :: Generate all graphs with a specified degree sequence (see http://www.research.att.com/~njas/sequences/A002851):: sage: for i in [4,6,8]: ...    print i, len([g for g in graphs(i,deg_seq=[3]*i) if g.is_connected()]) ...       print i, len([g for g in graphs(i, deg_seq=[3]*i) if g.is_connected()]) 4 1 6 2 8 5 sage: for i in [4,6,8]:                                                                          # long time ...    print i, len([g for g in graphs(i,augment='vertices',deg_seq=[3]*i) if g.is_connected()]) # long time ...       print i, len([g for g in graphs(i,augment='vertices',deg_seq=[3]*i) if g.is_connected()]) # long time 4 1 6 2 8 5 :: :: sage: print 10, len([g for g in graphs(10,deg_seq=[3]*10) if g.is_connected()]) # not tested 10 19 REFERENCE: - Brendan D. McKay, Isomorph-Free Exhaustive generation.  Journal of Algorithms Volume 26, Issue 2, February 1998, pages 306-324. """ ################################################################################ #   Basic Structures ################################################################################ - Brendan D. McKay, Isomorph-Free Exhaustive generation.  *Journal of Algorithms*, Volume 26, Issue 2, February 1998, pages 306-324. """ ####################################################################### #   Basic Structures ####################################################################### def BarbellGraph(self, n1, n2): """ Returns a barbell graph with 2\*n1 + n2 nodes. n1 must be greater than or equal to 2. r""" Returns a barbell graph with 2*n1 + n2 nodes. The argument n1 must be greater than or equal to 2. A barbell graph is a basic structure that consists of a path graph of order n2 connecting two complete graphs of order n1 each. This constructor depends on NetworkX numeric labels. In this case, the (n1)th node connects to the path graph from one complete graph and the (n1+n2+1)th node connects to the path graph from the other complete graph. PLOTTING: Upon construction, the position dictionary is filled to of order n2 connecting two complete graphs of order n1 each. This constructor depends on NetworkX _ numeric labels. In this case, the n1-th node connects to the path graph from one complete graph and the n1 + n2 + 1-th node connects to the path graph from the other complete graph. INPUT: - n1 -- integer \geq 2. The order of each of the two complete graphs. - n2 -- nonnegative integer. The order of the path graph connecting the two complete graphs. OUTPUT: A barbell graph of order 2*n1 + n2. A ValueError is returned if n1 < 2 or n2 < 0. ALGORITHM: Uses NetworkX _. PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each barbell graph will be displayed with the two complete graphs in the lower-left and upper-right corners, with the path graph connecting diagonally between the two. Thus the (n1)th node will be drawn at a diagonally between the two. Thus the n1-th node will be drawn at a 45 degree angle from the horizontal right center of the first complete graph, and the (n1+n2+1)th node will be drawn 45 degrees below the left horizontal center of the second complete graph. EXAMPLES: Construct and show a barbell graph Bar = 4, Bells = 9 :: sage: g = graphs.BarbellGraph(9,4) sage: g.show() # long time Create several barbell graphs in a Sage graphics array :: complete graph, and the n1 + n2 + 1-th node will be drawn 45 degrees below the left horizontal center of the second complete graph. EXAMPLES: Construct and show a barbell graph Bar = 4, Bells = 9:: sage: g = graphs.BarbellGraph(9, 4); g Barbell graph: Graph on 22 vertices sage: g.show() # long time An n1 >= 2, n2 >= 0 barbell graph has order 2*n1 + n2. It has the complete graph on n1 vertices as a subgraph. It also has the path graph on n2 vertices as a subgraph. :: sage: n1 = randint(2, 2*10^2) sage: n2 = randint(0, 2*10^2) sage: g = graphs.BarbellGraph(n1, n2) sage: v = 2*n1 + n2 sage: g.order() == v True sage: K_n1 = graphs.CompleteGraph(n1) sage: P_n2 = graphs.PathGraph(n2) sage: s_K = g.subgraph_search(K_n1, induced=True) sage: s_P = g.subgraph_search(P_n2, induced=True) sage: K_n1.is_isomorphic(s_K) True sage: P_n2.is_isomorphic(s_P) True Create several barbell graphs in a Sage graphics array:: sage: g = [] sage: j = [] sage: for i in range(6): ...    k = graphs.BarbellGraph(i+2,4) ...    g.append(k) ...       k = graphs.BarbellGraph(i + 2, 4) ...       g.append(k) ... sage: for i in range(2): ...    n = [] ...    for m in range(3): ...        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ...    j.append(n) ... sage: G = sage.plot.plot.GraphicsArray(j) sage: G.show() # long time """ pos_dict = {} ...       n = [] ...       for m in range(3): ...           n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False)) ...       j.append(n) ... sage: G = sage.plot.plot.GraphicsArray(j) sage: G.show() # long time TESTS: The input n1 must be \geq 2:: sage: graphs.BarbellGraph(1, randint(0, 10^6)) Traceback (most recent call last): ... ValueError: Invalid graph description, n1 should be >= 2 sage: graphs.BarbellGraph(randint(-10^6, 1), randint(0, 10^6)) Traceback (most recent call last): ... ValueError: Invalid graph description, n1 should be >= 2 The input n2 must be \geq 0:: sage: graphs.BarbellGraph(randint(2, 10^6), -1) Traceback (most recent call last): ... ValueError: Invalid graph description, n2 should be >= 0 sage: graphs.BarbellGraph(randint(2, 10^6), randint(-10^6, -1)) Traceback (most recent call last): ... ValueError: Invalid graph description, n2 should be >= 0 sage: graphs.BarbellGraph(randint(-10^6, 1), randint(-10^6, -1)) Traceback (most recent call last): ... ValueError: Invalid graph description, n1 should be >= 2 """ # sanity checks if n1 < 2: raise ValueError("Invalid graph description, n1 should be >= 2") if n2 < 0: raise ValueError("Invalid graph description, n2 should be >= 0") pos_dict = {} for i in range(n1): x = float(cos((pi/4) - ((2*pi)/n1)*i) - n2/2 - 1) y = float(sin((pi/4) - ((2*pi)/n1)*i) - n2/2 - 1) j = n1-1-i pos_dict[j] = (x,y) for i in range(n1,n1+n2): x = float(i - n1 - n2/2 + 1) y = float(i - n1 - n2/2 + 1) pos_dict[i] = (x,y) for i in range(n1+n2,2*n1+n2): x = float(cos((5*pi/4) + ((2*pi)/n1)*(i-n1-n2)) + n2/2 + 2) y = float(sin((5*pi/4) + ((2*pi)/n1)*(i-n1-n2)) + n2/2 + 2) pos_dict[i] = (x,y) import networkx G = networkx.barbell_graph(n1,n2) x = float(cos((pi / 4) - ((2 * pi) / n1) * i) - (n2 / 2) - 1) y = float(sin((pi / 4) - ((2 * pi) / n1) * i) - (n2 / 2) - 1) j = n1 - 1 - i pos_dict[j] = (x, y) for i in range(n1, n1 + n2): x = float(i - n1 - (n2 / 2) + 1) y = float(i - n1 - (n2 / 2) + 1) pos_dict[i] = (x, y) for i in range(n1 + n2, (2 * n1) + n2): x = float( cos((5 * (pi / 4)) + ((2 * pi) / n1) * (i - n1 - n2)) + (n2 / 2) + 2) y = float( sin((5 * (pi / 4)) + ((2 * pi) / n1) * (i - n1 - n2)) + (n2 / 2) + 2) pos_dict[i] = (x, y) import networkx G = networkx.barbell_graph(n1, n2) return graph.Graph(G, pos=pos_dict, name="Barbell graph") def BullGraph(self): """ r""" Returns a bull graph with 5 nodes. A bull graph is named for its shape. It's a triangle with horns. This constructor depends on NetworkX numeric labeling. PLOTTING: Upon construction, the position dictionary is filled to This constructor depends on NetworkX _ numeric labeling. For more information, see this Wikipedia article on the bull graph _. PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the bull graph is drawn as a triangle with the first node (0) on the bottom. The second and third nodes (1 and 2) complete the triangle. Node 3 is the horn connected to 1 and node 4 is the horn connected to node 2. EXAMPLES: Construct and show a bull graph :: sage: g = graphs.BullGraph() sage: g.show() # long time """ pos_dict = {0:(0,0),1:(-1,1),2:(1,1),3:(-2,2),4:(2,2)} ALGORITHM: Uses NetworkX _. EXAMPLES: Construct and show a bull graph:: sage: g = graphs.BullGraph(); g Bull graph: Graph on 5 vertices sage: g.show() # long time The bull graph has 5 vertices and 5 edges. Its radius is 2, its diameter 3, and its girth 3. The bull graph is planar with chromatic number 3 and chromatic index also 3. :: sage: g.order(); g.size() 5 5 sage: g.radius(); g.diameter(); g.girth() 2 3 3 sage: g.chromatic_number() 3 The bull graph has chromatic polynomial x(x - 2)(x - 1)^3 and Tutte polynomial x^4 + x^3 + x^2 y. Its characteristic polynomial is x(x^2 - x - 3)(x^2 + x - 1), which follows from the definition of characteristic polynomials for graphs, i.e. \det(xI - A), where x is a variable, A the adjacency matrix of the graph, and I the identity matrix of the same dimensions as A. :: sage: chrompoly = g.chromatic_polynomial() sage: bool(expand(x * (x - 2) * (x - 1)^3) == chrompoly) True sage: charpoly = g.characteristic_polynomial() sage: M = g.adjacency_matrix(); M [0 1 1 0 0] [1 0 1 1 0] [1 1 0 0 1] [0 1 0 0 0] [0 0 1 0 0] sage: Id = identity_matrix(ZZ, M.nrows()) sage: D = x*Id - M sage: bool(D.determinant() == charpoly) True sage: bool(expand(x * (x^2 - x - 3) * (x^2 + x - 1)) == charpoly) True """ pos_dict = {0:(0,0), 1:(-1,1), 2:(1,1), 3:(-2,2), 4:(2,2)} import networkx G = networkx.bull_graph() return graph.Graph(G, pos=pos_dict, name="Bull Graph") return graph.Graph(G, pos=pos_dict, name="Bull graph") def CircularLadderGraph(self, n): """ Returns a circular ladder graph with 2\*n nodes. A Circular ladder graph is a ladder graph that is connected at the ends, i.e.: a ladder bent around so that top meets bottom. Thus it can be described as two parallel cycle graphs connected at each corresponding node pair. This constructor depends on NetworkX numeric labels. This constructor depends on NetworkX numeric labels. PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the circular ladder graph is displayed as an inner and outer cycle pair, with (n_1 rows and n_2 columns). The toroidal 2-dimensional grid with parameters n_1,n_2 is the 2-dimensional grid graph with identital parameters the 2-dimensional grid graph with identical parameters to which are added the edges ((i,0),(i,n_2-1)) and ((0,i),(n_1-1,i)). but slow down creation of the graph.  Likewise computing layout information also incurs a significant speed penalty. For maximum speed, turn off labels and layout and decode the vertices explicily as needed.  The vertices explicitly as needed.  The :meth:sage.rings.integer.Integer.digits with the padsto option is a quick way to do this, though you may want to reverse the list that is output. G = networkx.dodecahedral_graph() return graph.Graph(G, name="Dodecahedron") ################################################################################ #   Named Graphs ################################################################################ ####################################################################### #   Named Graphs ####################################################################### def ChvatalGraph(self): """ r""" Returns the Chvatal graph. The Chvatal graph has 12 vertices. It is a 4-regular, 4-chromatic graph. It is one of the few known graphs to satisfy Grunbaum's conjecture that for every m 1, n 2, there is an m-regular, m-chromatic graph of girth at least n. EXAMPLE:: sage: G = graphs.ChvatalGraph() Chvatal graph is one of the few known graphs to satisfy Grunbaum's conjecture that for every m, n, there is an m-regular, m-chromatic graph of girth at least n. For more information, see this Wikipedia article on the Chvatal graph _. EXAMPLES: The Chvatal graph has 12 vertices and 24 edges. It is a 4-regular, 4-chromatic graph with radius 2, diameter 2, and girth 4. :: sage: G = graphs.ChvatalGraph(); G Chvatal graph: Graph on 12 vertices sage: G.order(); G.size() 12 24 sage: G.degree() [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] """ import networkx pos_dict = {} for i in range(5,10): x = float(cos((pi/2) + ((2*pi)/5)*i)) y = float(sin((pi/2) + ((2*pi)/5)*i)) pos_dict[i] = (x,y) sage: G.chromatic_number() 4 sage: G.radius(); G.diameter(); G.girth() 2 2 4 """ import networkx pos_dict = {} for i in range(5, 10): x = float(cos((pi / 2) + ((2 * pi) / 5) * i)) y = float(sin((pi / 2) + ((2 * pi) / 5) * i)) pos_dict[i] = (x, y) for i in range(5): x = float(2*(cos((pi/2) + ((2*pi)/5)*(i-5)))) y = float(2*(sin((pi/2) + ((2*pi)/5)*(i-5)))) pos_dict[i] = (x,y) pos_dict[10] = (.5,0) pos_dict[11] = (-.5,0) return graph.Graph(networkx.chvatal_graph(), pos=pos_dict, name="Chvatal Graph") x = float(2 * (cos((pi / 2) + ((2 * pi) / 5) * (i - 5)))) y = float(2 * (sin((pi / 2) + ((2 * pi) / 5) * (i - 5)))) pos_dict[i] = (x, y) pos_dict[10] = (0.5, 0) pos_dict[11] = (-0.5, 0) return graph.Graph(networkx.chvatal_graph(), pos=pos_dict, name="Chvatal graph") def DesarguesGraph(self): """ Returns the Desargues graph. PLOTTING: The layout chosen is the same as on the cover of [1]. EXAMPLE:: EXAMPLE:: sage: D = graphs.DesarguesGraph() sage: L = graphs.LCFGraph(20,[5,-5,9,-9],5) sage: D.is_isomorphic(L) True sage: D.show()  # long time REFERENCE: - [1] Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p = {'':(float(0),float(0))} pn={} # construt recursively the adjacency dict and the positions # construct recursively the adjacency dict and the positions for i in xrange(n): ci = float(cos(i*theta)) si = float(sin(i*theta)) - Michael Yurko (2009-09-01) """ from sage.combinat.combination import Combinations # dictionnary associating the positions of the 1s to the corresponding # dictionary associating the positions of the 1s to the corresponding # string: e.g. if n=6 and k=3, comb_to_str([0,1,4])=='110010' comb_to_str={} for c in Combinations(n,k): v[0], v[i] = v[i], v[0] d["".join(v)] = tmp_dict return graph.Graph(d, name = "%d-star"%n) def BubbleSortGraph(self,n): r''' Returns the bubble sort graph, B(n). def BubbleSortGraph(self, n): r""" Returns the bubble sort graph B(n). The vertices of the bubble sort graph are the set of permutations on n symbols. Two vertices are adjacent if one can be obtained from the other by swapping the labels in the ith and (i+1)th position for 1 \leq i \leq n-1. INPUT: -  n EXAMPLES:: sage: g = graphs.BubbleSortGraph(4) n symbols. Two vertices are adjacent if one can be obtained from the other by swapping the labels in the i-th and (i+1)-th positions for 1 \leq i \leq n-1. In total, B(n) has order n!. Thus, the order of B(n) increases according to f(n) = n!. INPUT: - n -- positive integer. The number of symbols to permute. OUTPUT: The bubble sort graph B(n) on n symbols. If n < 1, a ValueError is returned. EXAMPLES:: sage: g = graphs.BubbleSortGraph(4); g Bubble sort: Graph on 24 vertices sage: g.plot() # long time AUTHORS: The bubble sort graph on n = 1 symbol is the trivial graph K_1:: sage: graphs.BubbleSortGraph(1) Bubble sort: Graph on 1 vertex If n \geq 1, then the order of B(n) is n!:: sage: n = randint(1, 8) sage: g = graphs.BubbleSortGraph(n) sage: g.order() == factorial(n) True TESTS: Input n must be positive:: sage: graphs.BubbleSortGraph(0) Traceback (most recent call last): ... ValueError: Invalid number of symbols to permute, n should be >= 1 sage: graphs.BubbleSortGraph(randint(-10^6, 0)) Traceback (most recent call last): ... ValueError: Invalid number of symbols to permute, n should be >= 1 AUTHORS: - Michael Yurko (2009-09-01) ''' """ # sanity checks if n < 1: raise ValueError( "Invalid number of symbols to permute, n should be >= 1") if n == 1: return graph.Graph(self.CompleteGraph(n), name="Bubble sort") from sage.combinat.permutation import Permutations #create set from which to permute label_set = [str(i) for i in xrange(1,n+1)] label_set = [str(i) for i in xrange(1, n + 1)] d = {} #iterate through all vertices for v in Permutations(label_set): tmp_dict = {} #add all adjacencies for i in xrange(n-1): for i in xrange(n - 1): #swap entries v[i], v[i+1] = v[i+1], v[i] v[i], v[i + 1] = v[i + 1], v[i] #add new vertex new_vert = ''.join(v) tmp_dict[new_vert] = None #swap back v[i], v[i+1] = v[i+1], v[i] v[i], v[i + 1] = v[i + 1], v[i] #add adjacency dict d[''.join(v)] = tmp_dict return graph.Graph(d,name = "B(%d)"%n) return graph.Graph(d, name="Bubble sort") def BalancedTree(self, r, h): r""" Returns the perfectly balanced tree of height h \geq 1, whose root has degree r \geq 2. The number of vertices of this graph is 1 + r + r^2 + \cdots + r^h, that is, \frac{r^{h+1} - 1}{r - 1}. The number of edges is one less than the number of vertices. EXAMPLE: Plot a balanced tree of height 4 with r = 3 :: INPUT: - r -- positive integer \geq 2. The degree of the root node. - h -- positive integer \geq 1. The height of the balanced tree. OUTPUT: The perfectly balanced tree of height h \geq 1 and whose root has degree r \geq 2. A NetworkXError is returned if r < 2 or h < 1. ALGORITHM: Uses NetworkX _. EXAMPLES: A balanced tree whose root node has degree r = 2, and of height h = 1, has order 3 and size 2:: sage: G = graphs.BalancedTree(2, 1); G Balanced tree: Graph on 3 vertices sage: G.order(); G.size() 3 2 sage: r = 2; h = 1 sage: v = 1 + r sage: v; v - 1 3 2 Plot a balanced tree of height 5, whose root node has degree r = 3:: sage: G = graphs.BalancedTree(3, 5) sage: G.show()   # long time """ import networkx return graph.Graph(networkx.balanced_tree(r, h), name="Balanced Tree") A tree is bipartite. If its vertex set is finite, then it is planar. :: sage: r = randint(2, 5); h = randint(1, 7) sage: T = graphs.BalancedTree(r, h) sage: T.is_bipartite() True sage: T.is_planar() True sage: v = (r^(h + 1) - 1) / (r - 1) sage: T.order() == v True sage: T.size() == v - 1 True TESTS: We only consider balanced trees whose root node has degree r \geq 2:: sage: graphs.BalancedTree(1, randint(1, 10^6)) Traceback (most recent call last): ... NetworkXError: Invalid graph description, r should be >=2 sage: graphs.BalancedTree(randint(-10^6, 1), randint(1, 10^6)) Traceback (most recent call last): ... NetworkXError: Invalid graph description, r should be >=2 The tree must have height h \geq 1:: sage: graphs.BalancedTree(randint(2, 10^6), 0) Traceback (most recent call last): ... NetworkXError: Invalid graph description, h should be >=1 sage: graphs.BalancedTree(randint(2, 10^6), randint(-10^6, 0)) Traceback (most recent call last): ... NetworkXError: Invalid graph description, h should be >=1 sage: graphs.BalancedTree(randint(-10^6, 1), randint(-10^6, 0)) Traceback (most recent call last): ... NetworkXError: Invalid graph description, r should be >=2 """ import networkx return graph.Graph(networkx.balanced_tree(r, h), name="Balanced tree") def LCFGraph(self, n, shift_list, repeats): """ Returns the cubic graph specified in LCF notation. LCF (Lederberg-Coxeter-Fruchte) notation is a concise way of describing cubic Hamiltonian graphs. The way a graph is constructed is as follows. Since there is a Hamiltonian cycle, we first create - s_1 -- list of integers corresponding to the degree sequence of the first set. - s_2 -- list of integers corresponding to the degree sequence of the seccond set. sequence of the second set. ALGORITHM: sage: g.is_isomorphic(graphs.CompleteBipartiteGraph(5,2)) True Some sequences being uncompatible if, for example, their sums Some sequences being incompatible if, for example, their sums are different, the functions raises a ValueError when no graph corresponding to the degree sequences exists. ::